KA317 / LM317
3-Terminal Positive Adjustable Regulator

Features
• Output-Current In Excess of 1.5 A
• Output-Adjustable Between 1.2 V and 37 V
• Internal Thermal Overload Protection
• Internal Short-Circuit Current Limiting
• Output-Transistor Safe Operating Area Compensation
• TO-220 Package

Description
This monolithic integrated circuit is an adjustable 3-terminal positive-voltage regulator designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 V to 37 V range. It employs internal current limiting, thermal shutdown, and safe area compensation.

Ordering Information

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Package</th>
<th>Packing Method</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM317T</td>
<td>TO-220 (Single Gauge)</td>
<td>Rail</td>
<td>0°C to +125°C</td>
</tr>
<tr>
<td>KA317TU</td>
<td>TO-220 (Dual Gauge)</td>
<td>Rail</td>
<td>0°C to +125°C</td>
</tr>
</tbody>
</table>

Block Diagram

Figure 1. Block Diagram
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_I - V_O$</td>
<td>Input-Output Voltage Differential</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>T_{LEAD}</td>
<td>Lead Temperature</td>
<td>230</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature Range</td>
<td>0 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>$\Delta V_O/\Delta T$</td>
<td>Temperature Coefficient of Output Voltage</td>
<td>±0.02</td>
<td>%/°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>Internally Limited</td>
<td>W</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>80</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case</td>
<td>5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics

\(V_{I} - V_{O} = 5\text{ V}, I_{O} = 0.5\text{ A}, 0^\circ C \leq T_{J} \leq +125^\circ C, I_{MAX} = 1.5\text{ A}, P_{DMAX} = 20\text{ W},\) unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{LINE}</td>
<td>Line Regulation(1)</td>
<td>(T_{A} = +25^\circ C, 3\text{ V} \leq V_{I} - V_{O} \leq 40\text{ V})</td>
<td>0.01</td>
<td>0.04</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3\text{ V} \leq V_{I} - V_{O} \leq 40\text{ V})</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{LOAD}</td>
<td>Load Regulation(1)</td>
<td>(T_{A} = +25^\circ C, 10\text{ mA} \leq I_{O} \leq I_{MAX})</td>
<td>18</td>
<td>25</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{O} < 5\text{ V})</td>
<td>0.4</td>
<td>0.5</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{O} \geq 5\text{ V})</td>
<td>40</td>
<td>70</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10\text{ mA} \leq I_{O} \leq I_{MAX})</td>
<td>0.8</td>
<td>1.5</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>I_{ADJ}</td>
<td>Adjustable Pin Current</td>
<td>(3\text{ V} \leq V_{I} - V_{O} \leq 40\text{ V}, 10\text{ mA} \leq I_{O} \leq I_{MAX}, P_{D} \leq P_{MAX})</td>
<td>46</td>
<td>100</td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(\Delta I_{ADJ})</td>
<td>Adjustable Pin Current Change</td>
<td>(3\text{ V} \leq V_{I} - V_{O} \leq 40\text{ V}, 10\text{ mA} \leq I_{O} \leq I_{MAX}, P_{D} \leq P_{MAX})</td>
<td>2.0</td>
<td>5.0</td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Reference Voltage</td>
<td>(3\text{ V} \leq V_{IN} - V_{O} \leq 40\text{ V}, 10\text{ mA} \leq I_{O} \leq I_{MAX}, P_{D} \leq P_{MAX})</td>
<td>1.20</td>
<td>1.25</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>ST_{T}</td>
<td>Temperature Stability</td>
<td>(0.7%/V_{O})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{(MIN)}</td>
<td>Minimum Load Current to Maintain Regulation</td>
<td>(V_{I} - V_{O} = 40\text{ V})</td>
<td>3.5</td>
<td>12.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{O(MAX)}</td>
<td>Maximum Output Current</td>
<td>(T_{A} = 25^\circ C)</td>
<td>1.5</td>
<td>2.2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{I} - V_{O} \leq 15\text{ V}, P_{D} \leq P_{MAX})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{I} - V_{O} \leq 40\text{ V}, P_{D} \leq P_{MAX})</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_{N})</td>
<td>RMS Noise, % of (V_{OUT})</td>
<td>(T_{A} = +25^\circ C, 10\text{ Hz} \leq f \leq 10\text{ kHz})</td>
<td>0.003</td>
<td>0.010</td>
<td>%/V_{O}</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>Ripple Rejection(2)</td>
<td>(V_{O} = 10\text{ V}, f = 120\text{ Hz})</td>
<td>60</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>without (C_{ADJ})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C_{ADJ} = 10\mu F)</td>
<td>66</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Long-Term Stability, (T_{J} = T_{HIGH})</td>
<td>(T_{A} = +25^\circ C) for End Point Measurements, 1000 HR</td>
<td>0.3</td>
<td>1.0</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Load and line regulation are specified at constant junction temperature. Change in \(V_{D}\) due to heating effects must be taken into account separately. Pulse testing with low duty is used \((P_{MAX} = 20\text{ W})\).
2. \(C_{ADJ}\), when used, is connected between the adjustment pin and ground.
Typical Performance Characteristics

Figure 2. Load Regulation

Figure 3. Adjustment Current

Figure 4. Dropout Voltage

Figure 5. Reference Voltage

Figure 6. Short Circuit vs. Input-Output Voltage
Typical Application

Figure 7. Typical Application

Note:
3. C_i is required when the regulator is located an appreciable distance from power supply filter. C_o is not needed for stability; however, it does improve transient response. Since I_{ADJ} is controlled to less than 100 \mu A, the error associated with this term is negligible in most applications.

V_O = 1.25 V (1 + R_2 / R_1) + I_{ADJ}R_2
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Avinda™
AX-CAP™
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
FAIRCHILD®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastvCore™
FETBench™
FPS™
F-FPS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gsm™
GTO™
IntelliMAX™
ISPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MT™
MT®
MV®
mWise®
OptoHiT™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFT™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic™
TIMOPO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™
μSerDes™
UHE™
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™
仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>